Connection
Connect to lxhalle: ssh [RGB / LDAP / in.tum.de username]@lxhalle.in.tum.de
From lxhalle connect to a running graphics workstations: ssh [RGB / LDAP / in.tum.de username]@at-x-y-z.stud.rbg.tum.de
Development setup
Install Anaconda
Find the latest version of Anaconda for Linux x8664 (should be something like: Anaconda-...-Linux-x8664.sh) from the Anaconda Distribution Page (https://repo.anaconda.com/archive/) and copy the script name.
On the remote workstation download the bash script to the /tmp folder
cd /tmp
curl -O https://repo.anaconda.com/archive/Anaconda3-<2020.07>-Linux-x86_64.sh
Verify integrity of the installer:
md5sum Anaconda3-2020.07-Linux-x86_64.sh
Run the installer script:
bash Anaconda3-2020.07-Linux-x86_64.sh
Activate installation:
source ~/.bashrc
Test installation:
conda list
Create conda environment
conda create --name myenv python=3.6
Activate conda environment
conda activate myenv
Install pytorch and necessary cuda dependencies:
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
Verify
Start python interpreter:
python
Verify PyTorch installation:
from __future__ import print_function
import torch
x = torch.rand(5, 3)
print(x)
Verify, that GPU driver and CUDA are available to PyTorch:
import torch
torch.cuda.is_available()
torch.cuda.get_device_name(0)
General
Check GPU utilization on workstation:
nvidia-smi
Questions
For more information write to rbg@in.tum.de